# Le Machine Learning et TensorFlow

Le futur est déjà là

### Machine Learning, IA, Data science

- Intelligence Artificielle : théories et techniques pour produire des systèmes capables de simuler l'intelligence
- Machine Learning : apprentissage automatisé d'un système à partir d'exemples
- Data science : c'est la science de l'exploitation des données pour en extraire de la connaissance

## Pourquoi s'intéresser au Machine Learning?

- Cela peut me permettre de faire des prévisions (de ventes, d'incidents de paiement, de disponibilité du personnel...)
- Cela peut m'aider à réaliser des classifications (les prospects à traiter en priorité, les lieux de vente à haut potentiel...)
- Cela permet à un logiciel de reconnaître des instructions vocales ou des choses précises sur une photo
- Cela peut aider à prendre des décisions sur des sujets compliqués (un diagnostic technique, médical... ou un coup aux échecs!)

# Le cas des échecs



## Le jeu d'échecs justement...

- 1997, Deeper Blue bat le champion Gary Kasparov aux échecs... mais Deeper Blue est alors assez idiot!
- la combinatoire est suffisamment faible pour permettre à la puissance brute de calcul de l'emporter
- au jeu de Go, la combinatoire est 1 « Googol » (10 puissance 100) fois supérieure aux échecs
- en 2015, la plupart des experts en intelligence artificielle pensent que les logiciels ne battront pas les professionnels humains du jeu de Go avant 2025

# Du jeu d'échecs au jeu de go

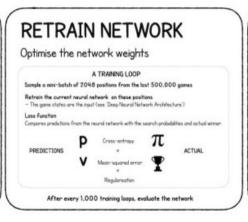


## Deep Mind et Alpha Go

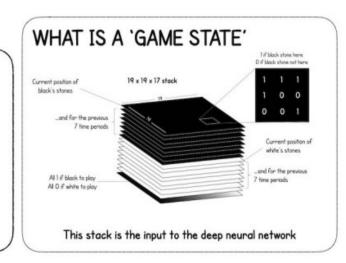
- fin 2015, Alpha Go de Deep Mind remporte un match contre un professionnel
- quelques mois plus tard, Alpha Go bat Lee Sedol 4-1
- Alpha Go fait alors découvrir de nouvelles stratégies dans ce jeu pourtant millénaire

#### Quelques exemples...

 en 2017, Alpha Go « Master » écrase tous les concurrents qu'il rencontre et Deep Mind cesse de le faire jouer contre des humains


## **Vraiment intelligent?**

- En octobre 2017, Deep Mind met au point Alpha Go Zéro
- Cette version apprend à jouer uniquement par des parties contre elle-même
- Au bout de 40 jours, elle bat les meilleures versions d'Alpha Go Master... tout en faisant moins de calculs!


### ALPHAGO ZERO CHEAT SHEET

The training pipeline for AlphaGo Zero consists of three stages, executed in parallel







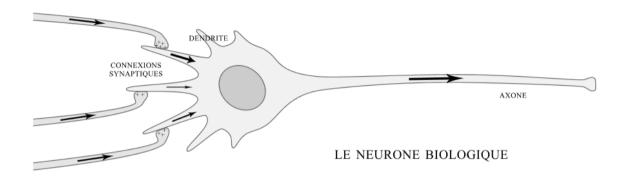


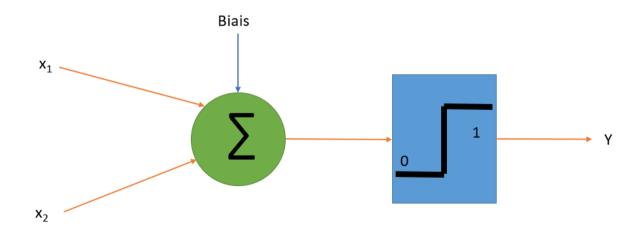
#### Retour aux échecs...

- En décembre 2017, on apprend la naissance d'Alpha Zéro : ce programme sait jouer au Go, mais aussi aux échecs... qu'il a appris tout seul
- Alpha Zéro bat « Stockfish » le meilleur programme d'échecs d'alors, avec des stratégies encore inconnues Un exemple...

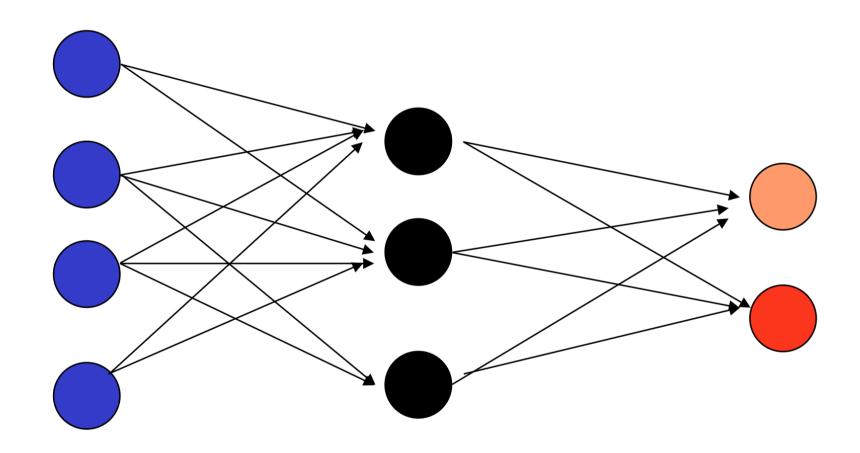
## En quoi le Machine Learning consiste?

- Collecter un maximum de données représentatives du problème que je veux traiter
- Choisir et paramétrer un modèle d'apprentissage
- Alimenter le modèle d'apprentissage avec des données d'apprentissage
- Evaluer ses performances sur des données de test
- Recommencer avec d'autres modèles ou paramètres


## Quelques modèles d'apprentissage...


- la méthode des plus proches voisins
- les arbres de décisions
- les réseaux de neurones
- les méthodes statistiques
- les algorithmes génétiques
- les SVM
- et bien d'autres encore...

#### Les réseaux de neurones


- une des approches les plus prometteuses
- s'inspire en partie du fonctionnement de notre cerveau
- approche utilisée par Deep Mind
- de très nombreuses variantes
- ... pas toujours la meilleure méthode pour autant !

# Le perceptron simple (1958)

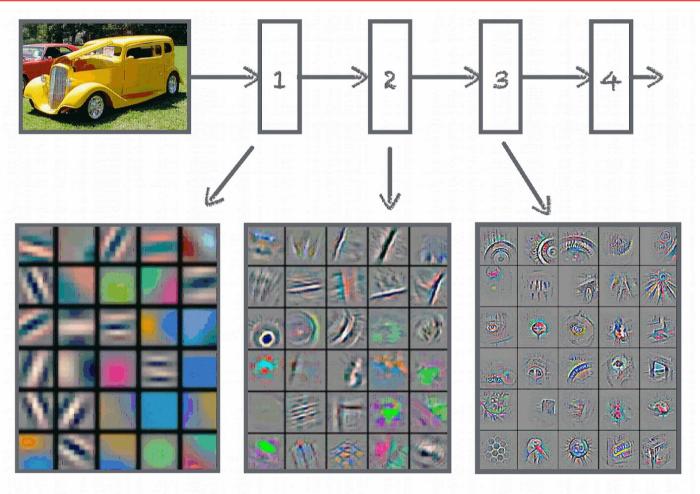




# Du perceptron aux réseaux de neurones



### Ca a l'air difficile, non?


Plusieurs choses nous facilitent la tâche aujourd'hui :

- des bases de données conséquentes existent sur de nombreux problèmes
- des environnements comme Tensorflow et Pytorch permettent de construire et d'exploiter des modèles
- des bibliothèques de modèles d'apprentissage prêts à l'emploi existent
- dans certains cas, une solution comme AutoML fait même presque tout le travail !

## Un exemple complet sous TensorFlow

- collecter des données
- mettre en place un réseau de neurones
- entraîner le modèle
- utiliser notre modèle en production

# Comment une machine reconnait une image?



Un exemple d'application avec Tesla https://vimeo.com/192179727